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Abstract

Longitudinal mechanical waves in biomembranes are described by a Boussi-
nesq-type wave equation. It is shown that in this case the nonlinearities
are of a different type compared with conventional models of solids. The
governing equation analysed in this paper is the improved Heimburg-Jackson
model with two dispersive terms. The soliton-type solutions of such a wave
equation are found and analysed. The existence of solitons depends on the
ratio of nonlinear terms and the width of solitons is governed by dispersive
terms.
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1. Introduction

The Boussinesq approximation for water waves is known from the 19th
century (see Bois [1]) and is nowadays generalised also for waves in solids
[2, 3]. In general terms, a Boussinesq-type model for modelling waves is based
on the classical second-order wave operator but more effects are included. Al-
together, it is characterised by the following effects [2]: (i) bi-directionality
of waves (due to the second-order wave operator); (ii) nonlinearity (of any
order); (iii) dispersion (of any order modelled by space and/or time deriva-
tives of the fourth order at least). Such a model may be described by the
following equation [2]:

utt − c2
0
uxx −

(

dF (u)

du

)

xx

= (β1utt − β2uxx)xx, (1)
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where F (u) is a polynomial, starting with second degree, c0 is the velocity
and β1, β2 are coefficients characterising dispersion. The crucial point for
grasping the physical effects is certainly the structure of the nonlinear term
in Eq. (1) and the signs of coefficients β1, β2 or the combination of possible
other higher-order terms.

Many studies are devoted to the dispersion analysis of Eq. (1), i.e., the
influence of the structure of its r.h.s. [2, 4, 5, 6] on dispersion relations and
possible stabilities or instabilities of speeds over the large range of frequen-
cies. Less attention is paid to the influence of nonlinearities on wave motion
modelled by Eq. (1) or alike. Here the main issue is whether the nonlinear
terms of f(u)-type or g(ux)-type appear in the governing equation. Further
we represent the governing equations either in terms of u (which is displace-
ment) or in terms of v = ux (which is deformation). As shown further in
Section 2, both cases have been described for modelling waves in various
studies. However, the problem is not related to the formulation of governing
equations only but also to the formulation of initial or boundary conditions,
i.e., to the excitation of wave processes.

In this paper we start in Section 2 with the presentation of various models
and then proceed to one of the crucial problems in solitonics – the existence
of solitons (Section 3). Then in Section 4 we proceed to the analysis of
the improved Heimburg-Jackson model and demonstrate how the solution
depends on the shape of the ‘pseudo-potential’. This explains the role of the
f(u)-type nonlinearities in the model. It is also shown how the width of the
soliton depends on dispersive effects. Finally, in Section 5, the final remarks
are given.

2. Boussinesq-type models

In what follows, the main cases of Boussinesq-type models used for de-
scribing waves in solids are presented. For microstructured solids the gov-
erning equation for longitudinal waves in terms of displacement u is [3, 7]

utt − (b+ µux)uxx = δ(βutt − γuxx)xx, (2)

where nonlinearity of the macrostructure is taken into account, b, µ, β, γ are
physical coefficients and δ is a scale factor. In terms of deformation v = ux,
Eq. (2) takes the form

vtt − bvxx −
1

2
µ
(

v2
)

xx
= δ(βvtt − γvxx)xx. (3)
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The analysis of .(2) and (3) is given by Tamm [8], Peets [9] and Berezovski et
al. [10]. For longitudinal waves in rods, the governing equation in terms of
deformation is derived by Porubov [11]. In original notations this equation
is

vtt − avxx − c1
(

v2
)

xx
= −α3vxxtt + α4vxxxx (4)

with a, c1, α3, α4 denoting the physical coefficients including the radius of the
rod. Here v = ux. Compared with Eq. (3), where dispersion effects appear
due to the presence of the microstructure, the dispersion effects in Eq. (4)
are due to the geometry of the rod.

In mathematical terms, dispersive effects in Eqs (1)-(3) are described by
the higher-order space and space time derivatives. The structure of Eq. (2)
demonstrates clearly the influence of the inertia of the microstructure and its
elasticity [3] while in the case of geometrical dispersion the mixed derivative
appears due to the Love assumption linking the transverse displacement w
to the longitudinal deformation ux: w = −rνux, where r is the radius of the
rod and ν – Poisson’s ratio [11].

It is possible that the dispersive effects are described by different assump-
tions. Bogdanov and Zakharov [6] have used the following form (in original
notations)

3

4
α2vtt − βvxx +

3

2

(

v2
)

xx
= −

1

4
vxxxx (5)

in order to study long-wave and short-wave instabilities. Here α and β are
the physical coefficients.

Christou and Papanicolau [12] have studied even higher-order dispersion
modelled by

vtt − γ2vxx − α1

(

v2
)

xx
= β1v4x + δ1v6x, (6)

where γ, α1, β1, δ1 are coefficients with δ1 > 0. Maugin [13] has introduced
the Maxwell-Rayleigh equation

utt − uxx −

(

dF (u)

du

)

xx

= γ(uxx − utt)tt, (7)

where dispersive effects are influenced by the fourth-order time derivatives.
The nonlinearities may be modelled also differently. For waves in biomem-

branes, Heimburg and Jackson [14] have assumed that the sound velocity in
the membrane depends on the density changes ∆ρA = u:

c2 = c2
0
+ pu+ qu2 + ... , (8)
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where c0 is the velocity in the unperturbed state, p < 0 and q > 0 are
coefficients determined from the experiments [14]. Then the longitudinal
waves are described by the governing equation

utt −
[(

c2
0
+ pu+ qu2

)

ux

]

x
= −h1uxxxx, (9)

where h1 characterises the strength of dispersion described by an added ad

hoc term (uxxxx).
Engelbrecht et al., [15] and Tamm and Peets [16] have derived an im-

proved version of Eq. (9) eliminating the possible instability of the solution
due to infinite velocity at high frequencies. This equation is

utt −
[(

c2
0
+ pu+ qu2

)

ux

]

x
= −h1uxxxx + h2uxxtt, (10)

where h2 is an additional physical coefficient. With such dispersive terms in
Eq. (10), the internal structure of the biomembrane is better described than
in the original Eq. (9) [15].

In order to compare Eq. (10) with other Boussinesq-type models shown
above, we rewrite it like

utt −
(

c2
0
+ pu+ qu2

)

uxx − (p+ 2qux)u
2

x = −h1uxxxx + h2uxxtt. (11)

It is clearly seen that nonlinearities in Eq. (11) differ considerably from
other models (Eqs (1) – (7)) – usually the nonlinearities in Boussinesq-
type equations are in terms of ux, however in Eq. (11) the nonlinearities
are in terms of plain u, which is unusual for a Boussinesq-type models [2]. It
must also be stressed that the nonlinearities in Eq. (11) can be expressed as
[(pu+ qu2) ux]x = p(u2)xx/2 + q(u3)xx/3, which in principle is different from
models (5), (6) and alike. Namely, models (5), (6) include (v2)xx and (v3)xx
as these nonlinearities are in terms of deformation v = ux.

3. Soliton solutions to Boussinesq-type models

The standard way to find soliton solutions is to seek for stationary solu-
tions as functions of a moving coordinate ξ = x− ct, where c is the speed of
the soliton. For Eq. (1), named also as ‘Boussinesq Paradigm Equation’ [2],
the soliton solution for F (u) = 1/3αu3 is

u = A sech2 [b(x− ct)] , (12a)

A = 3
c2
0
− c2

2α
, b =

1

2

√

c2
0
− c2

β2 − β1c2
, (12b)
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where c is a speed of a soliton. It is important to stress the existence of
sub-critical solitons with negative amplitudes and super-critical solitons with
positive amplitudes. The general condition for existence of such solitons is
β2 < β1c

2

0
; sub-critical solitons have c < c0

√

β2/β1 and super-critical solitons
obey |c| > c0.

Porubov [17] has derived the same solution (12a) with A and b in terms of
the rod radius r and Poisson’s ratio ν. Janno and Engelbrecht [18] have found
the existence of a single solitary wave for Eq. (3) provided the conditions

c2 − b

βc2 − γ
> 0, (13a)

µ 6= 0, βc2 − γ 6= 0, c2 − b 6= 0 (13b)

are satisfied. Then the solitary wave is

v(x− ct) = A sech2

[

1

2
κ(x− ct)

]

, (14a)

A = 3(c2 − b)/µ, κ =

√

c2 − b

δ(βc2 − γ)
. (14b)

It is easy to check that the solutions (12) and (14) coincide. If the microstruc-
ture is also considered nonlinear then the structure of (14) is modified [18]
and the outcome is a deformed soliton [18].

The solitons described by (12) and (14) are in terms of v, i.e., in terms
of deformation. We proceed now to Eqs (9)–(11) in terms of density changes
u which is proportional to the displacement along x-axis. There is a sig-
nificant difference between the solitons or solitary waves explained in terms
of displacements or deformation. Namely, a single pulse (sech2-type) of a
displacement means actually a sign-changing deformation (Fig. 1a), while a
single pulse (sech2-type) of a deformation means the change of the displace-
ment from one level to another (Fig. 1b).

4. Analysis of the improved Heimburg-Jackson model

For convenience of the following analysis Eq. (10) is rewritten in a dimen-
sionless form:

UTT = [(1 + PU +QU2)UX ]X −H1UXXXX +H2UXXTT , (15)
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Figure 1: Left: sech2-type displacement U (solid line) and deformation UX (dashed line),
right: sech2-type deformation UX (dashed line) and displacement U (solid line).

with X = x/l, T = c0t/l, U = u/ρ0 and P = pρ0/c
2

0
, Q = qρ2

0
/c2

0
, H1 =

h1/(c
2

0
l2), H2 = h2/l

2; where l is a certain length [15].
Solutions for Eq. (15) are found by seeking waves of permanent shape

and size by looking for solutions such that

V = V (ξ), ξ = X − βT, (16)

where is V is some function and β is constant wave velocity [19, 20]. Substi-
tuting this into Eq. (15) we get

β2V ′′ = ((1 + PV +QV 2)V ′)′ −H1V
′′′′ +H2β

2V ′′′′. (17)

Integrating Eq. (17) twice we get after some rearranging

(H1 −H2β
2)V ′′ = (1− β2)V +

1

2
PV 2 +

1

3
QV 3 + AV +B, (18)

where A and B are constants of integration. Since we are looking for solitary
wave, then we may add boundary conditions that V, V ′, V ′′ → 0 as X → ±∞
and therefore A,B = 0 [19, 20]. Now the Eq. (18) is multiplied by V ′ and
integrated to get

(H1 −H2β
2)(V ′)2 = (1− β2)V 2 +

1

3
PV 3 +

1

6
QV 4, (19)

which can be rewritten as

(H1 −H2β
2)(V ′)2 = Φeff (V ), (20)
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where

Φeff (V ) = (1− β2)V 2 +
1

3
PV 3 +

1

6
QV 4 (21)

is a fourth-order ‘pseudo-potential’ which allows us to investigate the effect
of the parameters P , Q and β on the solutions. Note that for the classical
KdV equation the ‘pseudo-potential’ is of the third order [20].

In case ofH2 = 0 the ‘pseudo-potential’ (21) also applies for the Heimburg-
Jackson model (9) and has been analysed by Lautrup et al. [21] for a par-
ticular set of parameters that are relevant for the solitary wave propagation
in biomembranes (P < 0, Q > 0). Mathematically, however, the parameters
P , Q can have wider range of values (positive or negative) enlarging so the
class of possible solutions of model (15). General mathematical analysis of
Eq. (21) (with H2 = 0) has been given by Freistühler and Höwing [22]. Here
we present an analysis based on understandings of wave mechanics in the
context of the Boussinesq’s paradigm [2, 3, 4].

The four zeros of the polynomial (21) are

V1,2 = 0 and V3,4 =
P

Q

(

−1 ±

√

1−
(1− β2)6Q

P 2

)

. (22)

Double zero at V1,2 = 0 indicates the saddle point, which is minimal require-
ment for the existence of solitary waves [19, 20]. It can also be deduced from
Eqs (21) and (22) that the additional condition for the velocity β is

1 > |β| >

√

1−
P 2

6Q
, (23)

which is also the case for the Heimburg-Jackson model (9) [21]. The analyt-
ical solution of Eq. (11) is

u(ξ) =
6(β2 − 1)

P (1 +
√

1 + 6Q(β2 − 1)/P 2 cosh(ξ
√

(1− β2)/(H1 −H2β2))
, (24)

where ξ = X − βT and β is the velocity of the solitary wave. We also note
that if H2 = 0 then the Eq. (24) reduces to the solution of Eq. (9) which can
be found in [21].

Four typical cases of ‘pseudo-potential’ Φeff (V ) > 0 and corresponding
wave profiles are depicted in Figs 2 and 3 respectively. Solitary wave solutions
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are possible when Φeff (V ) has a local minimum at V = 0 with at least one
local maximum next to it. This means that in our case solitary wave solutions
are possible in the region where Φeff (V ) > 0. It can be seen in Figs 2 and
3 that positive amplitude solitary waves emerge when P < 0 and negative
amplitude solitary waves when P > 0. The analysis of Eq. (21) shows that

Figure 2: Shape of the effective potential (21) for four different cases. β = 0.7, |P | = 16
and |Q| = 80. Subfigures (d) and (f) represent blowups of the effective potential (21) near
V3 for subplots (c) and (e) respectively. Arrows point to the local maxima near V3.

for a given set of parameters the solitons amplitude is equal to

V3 =
P

Q

(

−1 +

√

1−
(1− β2)6Q

P 2

)

. (25)

This is because V3 is always closer to the saddle point than V4 (see Fig. 2
and corresponding wave profiles in Fig. 3). In case of two adjacent maxima
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to the saddle point at V = 0, the local maximum closer to the saddle point
is realised (c.f. Figs 2 c,e).

Figure 3: Solitary wave solutions of Eq. (10) (solid line) and Eq. (9) (dashed line) in case
of β = 0.7, |P | = 16,|Q| = 80, H1 = 2 and H2 = 3.

Equation (25) also sets constraints to parameters P and Q – solitary wave
solutions only exist when Q < P 2/((1−β2)6), i.e., parameter Q has an upper
bound but no lower bound.

It is also interesting to consider the extreme cases of P = 0 and Q = 0.
When Q = 0 the ‘pseudo-potential’ (21) becomes the third order polyno-
mial and has double zero at V = 0 and one adjacent to it, which is similar
behaviour as in case of the KdV equation [20]. In case of P = 0 the ‘pseudo-
potential’ is symmetrical with respect to the vertical axis with double zero
at V = 0.

In order to demonstrate the effect of the dispersion parameter H2 on
the analytical solution of Eq. (24), a case with H2 = 0 is also plotted in
Fig. 3 (dashed line) which is a solution for the original Heimburg-Jackson
model (9). It can be seen in Fig. 3 that the second dispersion parameter
H2 makes solution (24) more localised. The effect is stronger in case of
anomalous dispersion (H2 > H1, see [24] for details) than in case of the
normal dispersion (H2 > H1).
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5. Final remarks

The longitudinal waves in biomembranes are described by a Boussinesq-
type governing equation [14, 15], Leaving aside the physical description [14,
25], two comments are essential concerning the structure of the governing
equation.

First, contrary to the widely used models for waves in fluids and solids
[2], where terms like uxuxx, (ux)

2uxx appear, here the terms like uuxx, u
2uxx

reflect the nonlinear effects. This due to the special structure of the lipids
which form the biomembrane. Although only the combination P < 0, Q > 0
corresponds to the case of biomembranes [14, 21], the other cases of P and
Q demonstrate effectively the role of nonlinearities in the governing equation
(15). It must be noted that in principle relation (8) may involve even higher
order nonlinear terms like ru3 [26].

Second, it has been proposed that the original Heimburg-Jackson model
(9) [14] involving one dispersive term (uxxxx) must be improved involving two
dispersive terms (uxxxx, uxxtt) [15]. The improved model is based on concepts
of continuum mechanics where the term uxxtt actually describes the influence
of the inertia of the microstructure. It has been shown that in this case the
possible instability at higher frequencies is eliminated.

In the present paper the existence of solitons is analysed based on the
improved wave equation (10). The soliton solution (24) derived by conven-
tional technique in term of ξ(X − βT ) includes the coefficients of nonlinear
terms and the coefficients of dispersive terms (cf. [14, 23]). The conditions
for the existence of such a solution are presented. It has been shown that
in general terms the soliton (24) may be narrower than the case without the
term uxxtt (see Fig. 3). This is a direct reflection that the internal structure
of a biomembrane has inertia.

It must be stressed that the governing equation (10) describes the lon-
gitudinal wave with an amplitude u. From the theory of rods in continuum
mechanics it is shown that the transverse displacement is then proportional
to ux. In case of a soliton-type wave ux has a typical shape of a multival-
ued profile (see Fig. 1a). This coincides qualitatively with measurements by
Tasaki [27, 28] who measured the transverse displacement of the nerve fibre
which is similar to the dashed line UX in Fig. 1a.

We note that the emergence of solitons modelled by Eq. (15) from an
initial input is analysed in [16, 24]. The analysis of the collision of solitons
should show whether the obtained solitons are solitons in the classical sense
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(interaction without radiation). The fascinating problem of wave propagation
in biomembranes needs further studies. Definitely the dissipative effects and
coupling with action potential should be analysed in detail (see for example
[29]).
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(2007) 479–495.

[2] C. I. Christov, G. A. Maugin, and A. V. Porubov. On Boussinesq’s
paradigm in nonlinear wave propagation. C. R. Mecanique, 335(9-10)
(2007) 521–535.

[3] J. Engelbrecht, A. Salupere, and K. Tamm. Waves in microstructured
solids and the Boussinesq paradigm. Wave Motion, 48(8) (2011) 717–
726.

[4] C. Christov, G. A. Maugin, and M. Velarde. Well-posed Boussinesq
paradigm with purely spatial higher-order derivatives. Phys. Rev. E,
54(4) (1996) 3621–3638.

[5] G. A. Maugin. Nonlinear Waves in Elastic Crystals. Oxford University
Press, Oxford, 1999.

[6] L. V. Bogdanov and V. E. Zakharov. The Boussinesq equation revisited.
Phys. D Nonlinear Phenom., 165(3-4) (2002) 137–162.

[7] J. Engelbrecht, A. Berezovski, F. Pastrone, and M. Braun. Waves in mi-
crostructured materials and dispersion. Philos. Mag., 85(33-35) (2005)
4127–4141.

11



[8] K. Tamm. Wave Propagation and Interaction in Mindlin-Type Mi-
crostructured Solids: Numerical Simulation. PhD thesis, Tallinn Uni-
versity of Technology, 2011.

[9] T. Peets. Dispersion Analysis of Wave Motion in Microstructured Solids.
PhD thesis, Tallinn University of Technology, 2011.

[10] A. Berezovski, J. Engelbrecht, A. Salupere, K. Tamm, T. Peets, and
M. Berezovski. Dispersive waves in microstructured solids. Int. J. Solids
Struct., 50(11-12) (2013) 1981–1990.

[11] A. Porubov. Localization of Nonlinear Deformation Waves. Fizmatlit,
Moscow, 2009.

[12] M. Christou and N. Papanicolaou. Kawahara solitons in Boussinesq
equations using a robust Christov-Galerkin spectral method. Appl.
Math. Comput., 243 (2014) 245–257.

[13] G. A. Maugin. On some generalizations of Boussinesq and KdV systems.
Proc. Estonian Acad. Sci. Phys. Math., 44 (1995) 40–55.

[14] T. Heimburg and A. D. Jackson. On soliton propagation in biomem-
branes and nerves. Proc. Natl. Acad. Sci. USA, 102(28) (2005) 9790–5.

[15] J. Engelbrecht, K. Tamm, and T. Peets. On mathematical mod-
elling of solitary pulses in cylindrical biomembranes. Biomech. Model.
Mechanobiol., 14 (2015) 159–167.

[16] K. Tamm and T. Peets. On solitary waves in case of amplitude-
dependent nonlinearity. Chaos Soliton. Fract., 73 (2015) 108–114.

[17] M. A. Porter, N. J. Zabusky, B. Hu, and D. K. Campbell. Fermi, Pasta,
Ulam and the Birth of Experimental Mathematics. Am. Sci., 97(3)
(2009) 214.

[18] J. Janno and J. Engelbrecht. Microstructured Materials: Inverse Prob-
lems. Springer, Heidelberg et al., 2011.

[19] M. J. Ablowitz. Nonlinear Dispersive Waves. Asymptotic Analysis and
Solitons. Cambridge Univ Press, Cambridge, 2011.

12



[20] P. Drazin and R. Johnson. Solitons: an Introduction. Cambridge Uni-
versity Press, Cambridge, 1989.

[21] B. Lautrup, R. Appali, A. D. Jackson, and T. Heimburg. The stability
of solitons in biomembranes and nerves. Eur. Phys. J. E. Soft Matter,
34(6) (2011) 1–9.
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